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Nuclear magnetic relaxation dispersion (NMRD) measurements
can provide valuable information about the dynamics and struc-
ture of macromolecular solutions and other complex fluids. A large
number of 1H NMRD studies of water in concentrated protein
solutions and in semisolid biological samples have been reported.
The observed dispersion usually extends over a wide frequency
range and then cannot be described by a Lorentzian spectral
density function. We propose here a model-free approach for
analyzing such stretched dispersion profiles. Unlike the traditional
empirical fitting procedures, the model-free approach is based on
rigorous theory and produces parameters with well-defined phys-
ical significance. The model-free approach is validated with the
aid of synthetic relaxation data, showing that it is robust and
accurate, and is then applied to new water 1H NMRD data from
solutions of the protein bovine pancreatic trypsin inhibitor (BPTI).
By separating the static and dynamic information content of the
relaxation dispersion, the model-free analysis shows that the dra-
matic salt effect observed in BPTI solutions is due almost entirely
to a slowing down of protein rotation with little change of protein
structure. An analysis of the same data in terms of the empirical
dispersion function used in most 1H NMRD studies leads to a
qualitatively different picture. We demonstrate that this widely
used dispersion function is unphysical and that its parameters do
not have the physical meaning usually ascribed to them. © 1998

Academic Press
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INTRODUCTION

Within the motional-narrowing regime, all information
about molecular motions that can be derived from nuclear spin
relaxation rates is contained in the spectral density function (1).
To map out the frequency dependence of this function, the
relaxation rate must be measured over a wide range of mag-
netic field strengths. Suchnuclearmagneticrelaxationdisper-
sion (NMRD) measurements can be carried out with fast field-
cycling techniques (2) or with tunable and fixed-field
spectrometers of conventional type (3). Most NMRD studies

reported to date have been concerned with the relaxation of the
water 1H (and more recently,2H and 17O) resonance in bio-
logical systems ranging in complexity from dilute protein
solutions to intact tissue (4, 5). For relatively dilute protein
solutions, the dispersion is generally found (5) to be of Lorent-
zian form, as expected for relaxation induced by rotational
diffusion of nearly spherical noninteracting proteins. The first
water 1H relaxation dispersion profiles to be reported from
protein solutions (6–8), however, extended over a much wider
frequency range than a Lorentzian dispersion (see Fig. 1).
Subsequent water1H NMRD studies of biopolymer solutions,
gels, and tissues have shown that such a stretched dispersion
shape is the rule rather than the exception (4, 9–29).

Qualitatively, it is clear that dispersion stretching can have
several causes, including complex protein reorientational dy-
namics (due to structural heterogeneity induced by protein–
protein interactions), a distribution of proton exchange rates
(for buried water molecules and labile protein protons), or a
distribution of intermolecular dipole couplings (for immobi-
lized proteins) (3). The quantitative analysis of stretched water
1H dispersion profiles, however, is nontrivial. Two principal
approaches have been tried. In one, the dispersion shape fol-
lows from a microscopic model, the parameters of which are
determined from a direct fit to the dispersion data. Unless the
origin of dispersion stretching is well understood, however, the
physical significance of the derived parameters is questionable.
The other approach is an empirical one, where the dispersion
data are parametrized by a convenient and physically plausible
mathematical function. The vast majority of water1H disper-
sions have been analyzed by an empirical 3-parameter function
known as “the Cole–Cole expression” (4, 9, 17). Although this
function has no a priori validity, the parameters are generally
interpreted as if they had a definitive physical significance. In
particular, the characteristic time derived from the frequency
where the dispersion has decayed to half its maximum ampli-
tude is interpreted as a rotational correlation time.

In the present work, we examine this empirical dispersion
function and find that it is fundamentally inconsistent and may
lead to qualitatively incorrect inferences about the behavior of
the investigated system. We then describe a model-free ap-
proach to the analysis of stretched dispersion profiles, which
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we argue is preferable to both empirical analysis and multi-
parameter model fitting. In the model-free approach, the quan-
tities extracted from the dispersion data have a well-defined
physical significance and do not rely on any model assump-
tions. With the aid of synthetic dispersion data, we demonstrate
that the model-free analysis is robust and accurate. We then
present new water1H dispersion data from BPTI solutions,
revealing a dramatic salt effect. These data are analyzed by the
model-free approach and by the empirical “Cole–Cole” ap-
proach. The parameter values derived by these two approaches
differ greatly and even lead to qualitatively different conclu-
sions regarding the origin of the salt effect.

FUNDAMENTALS

The nuclear spin relaxation rate becomes frequency-depen-
dent when the motional frequencies modulating the spin–lattice
coupling are comparable to the level spacings of the spin
system (1). Within the motional-narrowing regime, the effect
of a fluctuating (classical) lattice variableV(t) on the spin
relaxation behavior can be fully described in terms of the time
correlation function (TCF)

C~t! 5 ^V~t!* V~t 1 t!&. [1]

The TCF is a real-valued quantity and, for dynamic models
obeying the detailed balance condition, is invariant under time
reversal:

C~2t! 5 C~t!. [2]

The relaxation superoperator involves the complex-valued
spectral density function (SDF)

Z~v! 5 E
0

`

dt exp~2ivt!C~t!, [3]

which may be decomposed as

Z~v! 5 J~v! 2 iK ~v!. [4]

The real part ofZ(v) is the usual SDF,

J~v! 5 E
0

`

dt cos~vt!C~t!, [5]

that determines the spin relaxation rates. For dipolar relaxation
of a like-spin pair (1) and for quadrupolar relaxation in the
effectively exponential regime (30), the longitudinal relaxation
rateR1 depends on the resonance frequencyv0 according to

R1 5 vRL
2 @0.2 J~v0! 1 0.8 J~2v0!#, [6]

wherevRL is the (dipolar or quadrupolar) rigid-lattice coupling
frequency. The imaginary part ofZ(v),

K~v! 5 E
0

`

dt sin~vt!C~t!, [7]

gives rise to the dynamic shift (31), which can affect the
lineshape but not the longitudinal relaxation.

Certain simple dynamic models, such as spherical-top rota-
tional diffusion in an isotropic medium, lead to an exponential
TCF,

C~t! 5 C~0!exp~2utu/tC!, [8]

and, hence, to a Lorentzian SDF,

J~v! 5 C~0!
tC

1 1 ~vtC!2 . [9]

In this simple case, the relaxation dispersionR1(v0) provides
two distinct pieces of information about the investigated sys-
tem: C(0) andtC. The initial TCF is the mean-square fluctu-
ation of the lattice variable,C(0) 5 ^uVu2&; it contains infor-
mation about the equilibrium structure of the system but is
entirely independent of the dynamics. The correlation timetC,

FIG. 1. Dispersion of the water1H longitudinal relaxation rateR1 in
aqueous solutions of 15 weight% human apotransferrin at 298 K (F) (6) and
28 weight% bovine serum albumin at 303 K (E) (8). The relaxation rate is
normalized by the measured rate at the lowest frequency (10.8 s21 for apo-
transferrin and 20.0 s21 for serum albumin). The curve is a Lorentzian
dispersion with a correlation time of 25 ns, as expected for the tumbling of
these proteins in dilute solution.
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on the other hand, is a purely dynamic quantity that provides
the time scale for thermal randomization of the lattice variable
V(t) (usually a function of molecular orientation).

In concentrated macromolecular solutions and other com-
plex fluids, the TCF usually decays nonexponentially. This
may be due to heterogeneity at the molecular level, as may
result from protein association, or to collective motions involv-
ing many coupled degrees of freedom, e.g., the undulation of
phospholipid bilayer membranes. In either case, the decay of
the TCF is slower than exponential and, hence, the decay of the
SDF is stretched out over a wider frequency range than for a
Lorentzian SDF. If the structural and dynamic complexities
can be adequately modeled, it may be possible to determine the
model parameters from a fit to the relaxation dispersion. In
many cases, however, the functional form of the SDF is not
known a priori. A nontrivial problem then arises: How should
the stretched dispersion profile be analyzed? In other words:
What, if any, unique information about the system can be
extracted from the relaxation data?

EMPIRICAL DISPERSION FUNCTIONS

Dielectric Relaxation

The problem of stretched dispersions was first encountered
in the dielectric relaxation of amorphous solids and viscous
liquids (32, 33). The observable here is the frequency-depen-
dent complex dielectric constante*(v), conventionally decom-
posed as

e* ~v! 5 e9~v! 2 ie0~v!. [10]

The real (in-phase) part,e9(v), is the (relative) dielectric per-
mittivity and the imaginary (90° phase-shifted) part,e0(v), is
the dielectric loss factor. The frequency dependencies ofe9(v)
and e0(v) are usually referred to as dielectric dispersion and
dielectric absorption, respectively, in analogy with the corre-
sponding optical phenomena. There is also a complete analogy
with the dispersion and absorption components of the free
induction decay in magnetic resonance. In all these cases, the
dispersion and absorption components are linked by the Kram-
ers–Kronig relations, which follow directly from the linearity
and causality of the response of the system to a weak harmonic
perturbation (34).

Since polar molecules are much more strongly coupled than
are nuclear spins, the theory of dielectric relaxation is more
complicated. If dipole–dipole correlations are neglected, how-
ever,e*(v) can be related to the electric–dipole TCF as (35)

e* ~v! 2 e0 5 2ivZ~v!, [11]

where e0 is the static relative permittivity and the complex
dipolar SDFZ(v) is related to the electric–dipole TCFC(t) as
in Eq. [3]. It then follows from Eqs. [4] and [10] that

e9~v! 2 e0 5 2vK~v!, [12a]

e0~v! 5 vJ~v!. [12b]

In Debye’s theory of dielectric relaxation (36), isotropic rota-
tional diffusion leads to an exponential TCF of the same form
as Eq. [8], withC(0) 5 e0 2 e` and tC identified as the
Debye rotational relaxation time. Consequently,

e9~v! 2 e` 5 C~0!
1

1 1 ~vtC!2 , [13a]

e0~v! 5 C~0!
vtC

1 1 ~vtC!2 . [13b]

The standard approach for analyzing the frequency-depen-
dent dielectric response from non-Debye materials is to invoke
a continuous distribution,f(tC), of correlation times, i.e., the
TCF is expressed as

C~t! 5 C~0! E
0

`

dtC f~tC!exp~2utu/tC!. [14]

The simplest version of this empirical approach is to use a
two-parameter distribution function with a characteristic time
t0 and a dimensionless width parameter. The first function of
this kind to be introduced was the so-called log-normal distri-
bution (32, 33),

f~tC! 5
1

tCÎ2ps2 expH2
1

2F1

s
lnStC

t0
DG 2J . [15]

This is a skewed distribution, where the average correlation
time, ^tC& 5 t0exp(s2/ 2), exceeds the most probable corre-
lation time,t̂C 5 t0exp(2s2). The width parameters can be
interpreted as the root-mean-square variation of the activation
enthalpy (in units ofkBT) for a process with a jump rate
describable by transition-state theory. The SDFsJ(v) and
K(v) resulting from a log-normaltC distribution have to be
evaluated numerically.

A compact analytical representation with the same number
of parameters (one more than in the Debye model) was intro-
duced by Cole and Cole (37),

e* ~v! 2 e` 5 C~0!
1

1 1 ~ivt0!
b , [16]

where the positive exponentb (#1) measures the degree of
stretching of the dispersion with respect to the Debye case
(b 5 1). Combination of Eqs. [10], [12], and [16] yields for
the SDFs
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J~v! 5 2C~0!
1

v
ImF 1

1 1 ~ivt0!
bG

5 C~0!
1

v

~vt0!
bsin~bp/ 2!

1 1 2~vt0!
bcos~bp/ 2! 1 ~vt0!

2b , [17a]

K~v! 5 C~0!
1

v
ReF 1

1 1 ~ivt0!
2bG . [17b]

The empirical Cole–Cole function describes dielectric relax-
ation data from a variety of systems with remarkable accuracy.
Yet, it has no a priori validity and is therefore nothing more
than a convenient representation of the data.

If the system can be modeled in terms of a continuous
distribution of correlation times, then the SDFJ(v) corre-
sponding to the TCF in Eq. [14] is

J~v! 5 C~0! E
0

`

dtC f~tC!
tC

1 1 ~vtC!2 . [18]

Fuoss and Kirkwood showed that this integral transform can be
inverted analytically (38):

f~tC! 5 2
2

ptC
2 Im@ J~v 5 i /tC!#. [19]

In principle, this result would allow a uniquetC distribution to
be extracted from experimental dispersion data. In practice,
however, numerical difficulties severely limit the usefulness of
the inversion formula. Nevertheless, it can be used to calculate
the tC distribution corresponding to any integrable analytic
function J(v). For example, the Cole–Cole SDF in Eq. [17a]
corresponds to the distribution function (37)

f ~tC! 5
1

2ptC

sin~bp!

cos~bp! 1 cosh@b ln~tC /t0!#
. [20]

Nuclear Spin Relaxation

Many of the results first derived in a dielectric context can be
directly carried over to nuclear spin relaxation. The initial
motivation for invoking correlation time distributions in NMR,
however, was not to analyze stretched dispersions but to ac-
count for an unexpected temperature dependence ofT1 andT2

for polymers and adsorbed water. The log-normal distribution
was thus used to rationalize anomalies in theT1/T2 ratio and in
the temperature dependence ofT1 near the temperature of the
T1 minimum (39–45). The Cole–Cole SDF in Eq. [17a] has
also been used in this connection (39, 42).

The earliest reported relaxation dispersion profiles (6–8), of
the water1H resonance in concentrated protein solutions, were
distinctly stretched and could not be adequately described by a

Lorentzian SDF (see Fig. 1). The log-normal distribution was
used to analyze some of these early dispersion profiles (7, 8,
46), but the physical significance of the parameters in this
empirical distribution remained obscure.

While the Cole–Cole distribution has been used to analyze
the anomalous temperature dependence ofT1 andT2 (39, 42),
it has not, and cannot, be used to describe relaxation dispersion
profiles. Like the log-normal distribution [15], the Cole–Cole
distribution [20] is skewed towards long correlation times (but
is symmetric on a logarithmic scale). The wings of the Cole–
Cole distribution, however, decay so slowly, asymtotically as
(tC)2(b11), that the first moment of the distribution diverges.
This is most readily seen from Eqs. [17] and [18]. Settingv 5
0 in Eq. [18], we obtain the general result

J~0! 5 C~0!^tC&. [21]

Taking the limitv3 0 of Eq. [17a], however, we find thatJ(0)
; vb21 3 ` for b , 1. This is evidently due to the
divergence of̂ tC&. While a tC distribution with a divergent
first moment is not necessarily unphysical, a divergent relax-
ation rate surely is. Within the context of nuclear spin relax-
ation, a divergent SDF indicates that the motional-narrowing
condition is violated and, hence, that a more general theory of
spin relaxation must be used (1). This difficulty does not
appear in the dielectric context because the measured dielectric
response is related to the Fourier transform of the time deriv-
ative of the TCF, rather than of the TCF itself. This gives rise
to the v factor in Eqs. [11] and [12], which removes the
divergence.

The Hallenga–Koenig Function

A very large number of1H NMRD studies have been per-
formed on water in biological and colloidal systems, ranging
from macromolecular solutions to gels and tissues. The disper-
sion is nearly always found to be stretched out over a wider
frequency range than predicted by the Lorentzian SDF in Eq.
[9]. The vast majority of these stretched dispersion profiles
have been analyzed in terms of an empirical dispersion func-
tion refered to as “the Cole–Cole expression” (4, 9–29). First
introduced by Hallenga and Koenig, this empirical function
takes the form (9)

J~v! 5 A ReF 1

1 1 ~ivt0!
kG

5 A
1 1 ~vt0!

kcos~kp/ 2!

1 1 2~vt0!
kcos~kp/ 2! 1 ~vt0!

2k . [22]

In addition, one usually introduces the highly accurate (6), but
unnecessary, approximation of replacing the linear combina-
tion 0.2J(v0) 1 0.8 J(2v0) in Eq. [6] byJ(=3 v0). Like the

4 HALLE, JÓHANNESSON, AND VENU



Cole–Cole function in Eq. [17a], the Hallenga–Koenig (HK)
function [22] reduces to the Lorentzian SDF [9] in the trivial
limit k 5 1 if one identifiesA with C(0) tC. Furthermore, for
anyk value in the allowed range 0, k # 1, the HK function
drops to half its maximum value atv 5 1/t0, as does a
Lorentzian SDF atv 5 1/tC. (These frequencies also define
the inflection points of the dispersion profiles when plotted on
a logarithmic frequency scale.)

It was acknowledged at the outset that the HK function has
no a priori validity (9). Yet, the parametersA andt0 extracted
from fits to dispersion data are generally assigned definite
physical meanings and quantitatively compared to other data.
(Apparently, no attempt has been made to physically interpret
the parameterk.) In particular, when water relaxation disper-
sions from protein solutions are analyzed,t0 is always identi-
fied with the rotational correlation time of the protein.

It has frequently been stated (4, 9–11, 17, 21, 22, 29), and is
apparently widely believed, that Eq. [22] is the direct analogue
of the Cole–Cole dispersion used to analyze dielectric relax-
ation data and, therefore, that the two expressions have the
same physical basis. A comparison of Eqs. [17] and [22],
however, shows that the HK function differs in important ways
from the Cole–Cole function. Furthermore, despite claims to
the contrary (4, 17), the HK function does not satisfy the
Kramers–Kronig relation, as required for any physically ad-
missible SDF (1).

The Kramers–Kronig relation expresses a general connec-
tion between the in-phase (dispersion) and 90° out-of-phase
(absorption) linear response of a causal system (34). In our
notation, it takes the form

K~v! 5
2v

p E
0

`

dv9
J~v9!

v2 2 ~v9!2 . [23]

Since

2v

p E
0

`

dv9
cos~v9t!

v2 2 ~v9!2 5 sin~vt!,

it is clear that any pair of SDFsJ(v) andK(v) derived from
a TCFC(t) by cosine and sine transforms, as in Eqs. [5] and
[7], satisfies the Kramers–Kronig relation. Since the Cole–Cole
functions in Eq. [17] can be so derived (from an exponential
TCF averaged over thetC distribution [20]), they must there-
fore satisfy the Kramers–Kronig relation. The HK function
with k , 1, however, cannot be derived from any physically
admissible TCF. This follows directly from a general condition
on the SDF of a stationary random variableV(t), namely that
the integral ofJ(v) over all frequencies is proportional to the
mean-square fluctuation̂uVu2&. Using the time-reversal invari-
ance in Eq. [2], we can express Eq. [5] as

J~v! 5
1

2
ReE

2`

`

dt exp~2ivt!C~t!. [24]

By integrating both members of this equation overv, inter-
changing the order of integration, and recognizing the Fourier
integral representation of the delta function, 2pd(t) 5
*2`

` dvexp(2ivt), we obtain

E
0

`

dv J~v! 5
p

2
C~0!. [25]

The integral of the HK function [22], however, is divergent for
k , 1 sinceJ(v) ; v2k asymptotically. In fact,

E
0

`

dv J~v! 5
p

2

A

t0
k sinc@~1 2 k!p/ 2# lim

v3`

v12k. [26]

In the Lorentzian limit,k 5 1, this yields with Eq. [25],A 5
C(0) t0, as expected. Fork , 1, however, the integral di-
verges and, sinceC(0) 5 ^uVu2& must be finite, it follows that
the HK function is unphysical fork , 1.

MODEL-FREE ANALYSIS

General Principles

If empirical dispersion functions (whether unphysical or not)
are dismissed, what sense can then be made of stretched
relaxation dispersion data when the system is not sufficiently
well understood to formulate a realistic model? If the range of
the dispersion data is wide enough to define the low- and
high-frequency plateaus reasonably well, several rigorously
defined physical quantities can actually be extracted without
invoking a model. One such quantity is the integral of the
dispersion profile, which, according to Eq. [25], yields the
mean-square fluctuation

C~0! 5
2

p E
0

`

dv J~v!. [27]

The natural definition of an “average” motional time scale
associated with a stretched dispersion is the time integral of the
reduced TCF,

^tC& 5 E
0

`

dt C~t!/C~0! 5 J~0!/C~0!, [28]

obtained from the low-frequency dispersion plateauJ(0) and
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the dispersion integral. For a heterogeneous system with a
spatial distribution of isotropic rotational correlation times,
^tC& in Eq. [28] is simply the population-weighted average, as
in Eq. [21]. If the nonexponentiality ofC(t) reflects collective
motions,̂ tC& is an average of mode correlation times weighted
by the corresponding mode amplitudes.

The approach described here has some important advantages
over conventional strategies for analyzing stretched disper-
sions. First, the quantitiesC(0) and^tC& are rigorously defined
in terms of the fundamental TCF and therefore have well-
defined physical significance. This is not the case for the
parametersA andt0 in the HK function. Second, the present
analysis separates the static and dynamic aspects of the infor-
mation content. In particular, the mean-square fluctuationC(0)
is rigorously independent of the dynamics, i.e., the rates of
molecular motions. As illustrated under Applications, this sep-
aration of information can provide important clues about the
physical mechanism responsible for a stretched dispersion.
Third, the quantitiesC(0) and^tC& are model-independent and
therefore not biased by any unproven mechanistic assumptions.
In contrast, a direct multiparameter fit to a stretched dispersion
provides nonunique results that stand and fall with the legiti-
macy of the assumed model. A complete interpretation of the
data, of course, requires that a model be introduced at some
stage. The approach we advocate is to first determine the
model-free quantitiesC(0) and^tC&, which have indisputable
physical significance, and further interpret these quantities only
when and if a realistic model can be formulated. Having
isolated the purely static information content of the dispersion
in the form ofC(0) is then a decisive advantage, because the
static (structural) features of a complex system are usually far
easier to model than the dynamic ones.

While a Lorentzian dispersion is fully characterized by two
parameters, a stretched dispersion contains more information.
In many cases, such as water1H NMRD data from macromo-
lecular solutions, the dispersion can be adequately represented
by 3 or 4 parameters. In addition to the quantitiesC(0) and
^tC&, it should therefore be possible to extract one or two
independent measures of dispersion shape. Model-independent
shape indicators can be defined in many ways. A reasonable
approach is to characterize the shape of a stretched dispersion
J(v) with reference to a LorentzianJ0(v) with the same low-
and high-frequency limits asJ(v) and with the same frequency
at half amplitude. The inverse of this frequency defines a
characteristic timet0 that can be obtained from the condition

J~v 5 1/t0! 5
1
2

J~0!. [29]

The Lorentzian

J0~v! 5
J~0!

1 1 ~vt0!
2 [30]

thus intersectsJ(v) at the frequencyv 5 1/t0, where both
SDFs have decayed to half of the low-frequency limitJ(0). It
follows from Eqs. [27], [28], and [30] that

t0

^tC&
5 E

0

`

dv J~v!YE
0

`

dv J0~v!. [31]

With t0 defined as in Eq. [29], the integral ofJ(v) is generally
larger than that of the reference Lorentzian, so thatt0 $ ^tC&.

The asymmetry of a stretched dispersionJ(v) relative to the
reference LorentzianJ0(v) may be characterized by the two
quantities

l2 5 2 E
0

1/t0 dv

v
@ J0~v! 2 J~v!/J~0!, [32a]

l1 5 2 E
1/t0

` dv

v
@ J~v! 2 J0~v!#/J~0. [32b]

In a plot ofJ(v)/J(0) versus lnv, l2/2 andl1/2 are the areas
of the two regions bounded byJ(v) and J0(v) below and
above their intersection, respectively (see Fig. 2a).

Numerical Implementation

To determine the model-free parametersC(0), ^tC&, t0, and
l6, a discrete set of noisy data points must be integrated. This
calls for interpolation and smoothing, which may be accom-
plished in many ways. One possibility, which we have found
useful, is to introduce a continuous interpolation function that
represents the data to an accuracy commensurate with the
measurement error. The functional form should be physically
plausible and capable of representing most experimental dis-
persion profiles with a small number of parameters (compared
to the number of data points). The natural choice is the multi-
Lorentzian form

J~v! 5 O
n51

N

cn

tn

1 1 ~vtn!
2 , [33]

which can represent the SDF of any stationary Markov process
V(t) obeying detailed balance (47). This covers virtually all
cases of interest, including fast exchange processes among
discrete states or sites in a heterogeneous system (described by
a discrete master equation) and all types of single-particle or
collective dynamics governed by a Fokker–Planck equation,
e.g., free rotational diffusion of an asymmetric-top rotor (48),
restricted rotational diffusion (49), translational diffusion on
curved surfaces (50), and collective director fluctuations (51).

The 2N parameters of the multi-Lorentzian representation
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[33] can be determined by any nonlinear parameter estimation
method, e.g., the Levenberg–Marquardt algorithm (52). This
numerical problem is analogous to multiexponential decompo-
sition of a decaying signal, such as the free induction decay,
and has been amply discussed (53). The numberN of Lorent-
zians to be included can be objectively determined by means of
the F test (52). A fit of N Lorentzian terms toM data points
J(v i) with errorss i yields the reduced chi-square merit func-
tion

xr
2~N! 5

1

~M 2 2N! O
i51

M 1

s i
2 FJ~v i! 2 O

n51

N cntn

1 1 ~v itn!
2G 2

.

[34]

Another fit is then made withN 1 1 Lorentzians, yielding
xr

2(N 1 1), and if the fit was substantially improved the ratio
F 5 xr

2(N)/xr
2(N 1 1) will be large. If the measurement errors

are normally distributed, the quantityF follows the F distribu-
tion and the probability of observing a smallerF value is
P(N 1 1) 5 1 2 Im((M 2 2N 2 2)/ 2, (M 2 2N)/ 2), with
Im(a,b) the incomplete beta function andm 5 xr

2(N 1 1)/
[xr

2(N) 1 xr
2(N 1 1)]. The additional Lorentzian term is

accepted only if this probability exceeds a preassigned cutoff
value,P0. With P0 5 0.90, forexample, a fourth Lorentzian
term requires a 2.5-fold reduction ofxr

2 for 20 data points but
only a 34% reduction for 100 points. Starting withN 5 1 and
successively adding terms untilP(N 1 1) , P0, we can thus

construct an optimalN-Lorentzian representation of the data in
a well-defined way.

The multi-Lorentzian representation has the further appeal
of being analytically integrable. Substituting Eq. [33] into Eqs.
[27]–[29] and [32], we obtain

C~0! 5 O
n

cn, [35]

^tC& 5 O
n

cntn Y O
n

cn, [36]

l6 5 O
n

cntn ln$1
2
@1 1 ~t0/tn!

62#% YO
n

cn, [37]

with t0 determined by the implicit relation

O
n

cntn

1 1 ~tn/t0!
2 5

1
2 O

n

cntn. [38]

For small deviations from Lorentzian shape,t0 5 ^tC
2 &/^tC&,

which always is$^tC&, andl2 1 l1 5 ^tC&^tC
3 &/^tC

2 &2 2 1,
with ^tC

k & 5 ¥n cntn
k/¥n cn.

The multi-Lorentzian fit provides error estimates for the 2N
parameters {cn,tn}, but these errors are not independent and
therefore not suitable for estimating the errors in the model-
free parameters. The latter can be rigorously calculated by the

FIG. 2. Synthetic relaxation dispersion data analyzed with the model-free approach (a) and the HK approach (b). A Lorentzian dispersion with the same
frequency at half amplitude as the fitted dispersion curve is also shown in (a). The shaded areas are proportional to the shape parametersl2 andl1.
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Monte Carlo method (52). In this method, the {cn,tn} obtained
from a fit are regarded as the true values of these parameters.
A synthetic data setJ(v i), i 5 1,2, . . . ,M, is then generated
by computing eachJ(v i) from Eq. [33] with the “true” param-
eter values and adding a “measurement error” by generating a
random number from a normal distribution, the variance of
which is determined by the actual measurement errors i. A fit
to these synthetic data yields a new parameter set {cn,tn},
from which the model-free parameters are calculated according
to Eqs. [35]–[38]. By repeating this procedure many times, one
obtains an ensemble of values for each model-free parameter,
from which the error at a given confidence level can readily be
obtained.

We emphasize that the parameters {cn,tn} should not, in
general, be ascribed physical significance. The multi-Lorent-
zian representation is merely a convenient mathematical device
used in an intermediate step of the model-free analysis. Only if
independent information suggests that the system can actually
be modeled by a fixed number of Lorentzians should a direct
physical interpretation of the parameters {cn,tn} be attempted.

APPLICATIONS

In this section, the model-free approach is first validated by
analyzing synthetic relaxation dispersion data and then applied
to new1H NMRD data from solutions of the well-studied 6.5
kDa protein bovine pancreatic trypsin inhibitor (BPTI). The
results of the model-free analysis are also compared with the
results obtained with the widely used HK function. Although
we focus on the longitudinal relaxation rateR1 here, the
model-free approach can, of course, also be applied toR2 data
(which, however, rarely are used in NMRD work).

To adequately characterize a significantly stretched disper-
sion, the relaxation rate must be measured over at least 3
decades in frequency. This can currently be achieved only with
fast field-cycling (FFC) techniques (2), possibly in combina-
tion with conventional measurements (3). The vast majority of
NMRD data reported to date are FFC studies of water1H
relaxation in aqueous biopolymer samples. For isotropic sys-
tems, such as protein solutions, the longitudinal1H relaxation
rate due to fluctuating magnetic dipole–dipole couplings can
be expressed as (1, 54)

R1~v0! 5 a 1 b$~1 2 x!@0.2j ~v0! 1 0.8j ~2v0!#

1 x@0.1j ~0! 1 0.3j ~v0! 1 0.6j ~2v0!#}, [39]

wherea is the part ofR1 that remains in the extreme-motional-
narrowing regime up to the highest sampled frequency. Here
we have also introduced the reduced SDFj (v) 5 J(v)/C(0),
so the parameterb is proportional to the mean-square fluctu-
ationC(0). Furthermore,x denotes the fraction ofC(0) that is
due to dipole couplings with protons that do not contribute to

the observed resonance (“unlike” spins). The effect of cross-
relaxation (with “unlike” spins) on the measuredR1 is negli-
gible in protein solutions (54) and is therefore ignored here.

We shall also analyze the dispersion data with the (incon-
sistent) HK function, expressed on the conventional form

R1~v0! 5 a 1 bt0 ReF 1

1 1 ~i Î3v0t0!
kG . [40]

In the original notation of Hallenga and Koenig (9), a 5
1/T1W 1 D, bt0 5 A, t0 5 1/(2p=3 vC), and k 5 b/2.
(The HK exponentb should not be confused with our mean-
square fluctuation parameterb.) For the purpose of quantita-
tively comparing the HK and model-free approaches, we set
x 5 0 in Eq. [39], which then is virtually indistinguishable
from (6)

R1~v0! 5 a 1 b j ~Î3 v0!. [41]

For the model-free analysis of experimental data, however, we
retain the full expression [39] and setx 5 1/3, asfound for
water1H relaxation in BPTI solutions (54). (The full Eq. [39]
can also be rather accurately approximated by Eq. [41], but
with slightly redefined parameters (54).)

Synthetic Data

The convergence, robustness, and accuracy of the model-
free approach has been tested against a range of synthetic data
sets. The results of a typical validation test are shown in Fig. 2a
and in Tables 1–3. The dispersion comprises 30R1 values
evenly spaced on a logarithmic frequency axis and generated
with the aid of Eqs. [33] and [39]. The mean error inR1 is 2%.
Seven Lorentzian terms were included with thetn values
approximately logarithmically spaced in the range 3–200 ns
and with the weights adjusted to makecntn the same for all 7
terms. The proportionality constant linkingb andC(0) was set
to a value representative of water1H relaxation in a concen-
trated protein solution. The errors in the model-free parameters
were determined from 1000 Monte Carlo realizations and are
quoted at a confidence level of 68.3% (one standard deviation).

Figure 2a shows the optimal representation of the data,
based on 3 Lorentzians. A fourth Lorentzian was rejected by
the F test (see Table 1). The drastic reduction of the probability

TABLE 1
Convergence of Model-Free Analysis of Synthetic Data

N xr
2 P(N) a (s21) b (108 s22) ^tC& (ns)

1 56 — 0.692 3.11 15.1
2 3.3 1.000 0.609 4.52 12.0
3 1.10 0.997 0.582 5.11 10.8
4 1.12 0.570 0.581 5.15 10.8
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P(N), here from 0.997 for the optimal 3-Lorentzian represen-
tation to 0.570 forN 5 4, is typical. The choice of cutoff
probabilityP0 is therefore not critical. We recommend a value
in the range 0.8–0.9; rare borderline cases should be examined
individually. The model-free parameters converge rapidly to
their final values and are stable when one more Lorentzian is
added to the optimal representation (see Table 1).

Since experimental dispersion data are typically more or less
logarithmically spaced, the integral of the dispersion profile is
most sensitive to the quality of the high-frequency points.
Inaccurate results can be expected if a high-frequency plateau
is not evident in the data. To investigate the robustness of the
method in this regard, we successively removed data points
from the high-frequency end of the dispersion. For the data in
Fig. 2, 4 points can be removed without much effect on the
model-free parameters (see Table 2). When 6 points have been
removed, the optimal representation becomes bi-Lorentzian
and the parameter values change substantially. However, if the
highest-frequency point is retained and the following 6 points
are removed, the model-free parameters are within 10% of the
results obtained with all 30 points. The low-frequency points
are even less critical; removing the 10 lowest-frequency points
hardly affects the model-free parameters at all.

Table 3 shows that the model-free parameters can be accu-
rately determined from dispersion data with 2% random error.
Since the data were generated withx 5 1/3 in Eq. [39] (as
expected for water1H relaxation in protein solutions (54))
while x 5 0 was used for the fits (to allow a direct comparison
with the HK fit), the true values of the model-free parameters
were determined from a separate multi-Lorentzian fit (withx 5
0) to a synthetic data set generated with the same {cn,tn}
parameters but with negligible “measurement error.”

The fit of the HK dispersion function [40] to the same
synthetic data set is shown in Fig. 2b. As expected, this
4-parameter function does not fit the data as well as the
7-parameter function employed in the model-free analysis.
This is reflected in the systematic variation of the residuals and
in the larger reduced chi-square. More importantly, thea and
b parameter values are substantially in error (see Table 3). The
best determined parameter ist0, which in both approaches
simply defines the frequency of half amplitude but does not
have a simple physical interpretation. Sincet0 exceeds the
well-defined mean correlation timêtC& to an extent (here, a
factor 2.3) that depends on how stretched the dispersion is, the
common practice (4, 9, 11, 12, 15, 16, 18–22, 28, 29) of
identifying t0 with a macromolecular tumbling time is ques-
tionable. Moreover, when the prefactor (usually denoted byA)
of the dispersive term in Eq. [40] is divided byt0 to obtain a
static quantity (here denoted byb) proportional to the mean-
square fluctuation, a correspondingly large systematic error is
introduced in b. We emphasize that this is not merely a
question of how to define a characteristic time in a useful
manner. The prefactor measures the zero-frequency SDFJ(0)
5 C(0) ^tC&. If this quantity is divided byt0 rather than by
^tC&, one clearly does not obtain the mean-square fluctuation
C(0), asgenerally assumed. For the synthetic data in Fig. 2,
the HK analysis thus underestimates the trueb by more than a
factor 2. Since the microscopic interpretation of theb param-
eter has been clarified only recently (3, 5, 55), the systematic
underestimation ofb by the HK approach has gone unnoticed.

TABLE 2
Robustness of Model-Free Analysis of Synthetic Data

ma N xr
2 P(N) P(N1 1) a (s21) b (108 s22) ^tC& (ns)

0 3 1.10 0.997 0.570 0.586 0.01 5.16 0.2 10.86 0.3
1 3 1.11 0.997 0.579 0.586 0.01 5.26 0.2 10.66 0.4
2 3 1.15 0.995 0.521 0.576 0.02 5.36 0.2 10.46 0.5
3 3 1.14 0.981 0.571 0.606 0.02 4.96 0.3 11.16 0.6
4 3 1.16 0.970 0.496 0.566 0.04 5.46 0.4 10.26 0.7
5 3 1.28 0.872 0.619 0.666 0.04 4.46 0.2 12.46 0.7
6 2 1.28 1.000 0.710 0.866 0.03 3.26 0.1 16.56 0.6
6b 3 1.04 0.962 0.568 0.606 0.01 4.76 0.2 11.86 0.4

10c 3 1.03 0.983 0.494 0.586 0.01 5.16 0.2 10.46 0.5

a Number of data points omitted from the high-frequency end of the dispersion.
b Highest-frequency point retained.
c Data points omitted from the low-frequency end of the dispersion.

TABLE 3
Accuracy of Model-Free and Hallenga–Koenig Analysis

of Synthetic Data

Parameter True value Model-free Hallenga–Koenig

xr
2 — 1.10 (N 5 3) 2.92

a (s21) 0.592 0.586 0.01 0.436 0.01
b (108 s22) 5.00 5.16 0.2 2.36 0.1
^tC& (ns) 11.2 10.86 0.3 —
t0 (ns) 27.3 25.66 1.0 25.26 0.7
k — — 0.696 0.01
l2 0.607 0.556 0.05 —
l1 0.695 0.666 0.03 —
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Any dispersion that can be expressed as a sum of Lorentzi-
ans, and this includes virtually all cases of interest, varies as
1 2 constv0

2 and;v0
22 at low and high frequencies, respec-

tively. The HK dispersion (withk , 1) has a much weaker
frequency dependence in both of these limits: 12 constv0

k and
;v0

2k, respectively. The HK function therefore has difficulty
in reproducing the low- and high-frequency plateaus of a
stretched dispersion (see Fig. 2b). In the many previous appli-
cations of this function, this deficiency has usually not been
evident since the (mostly FFC) data rarely extend to suffi-
ciently high frequencies to see the high-frequency plateau and
often show considerable scatter at the lowest frequencies. (1H
dispersions from tissue do not even exhibit a low-frequency
plateau.) The high-frequency slope of the HK function seen in
Fig. 2b is responsible for the divergence of the dispersion
integral and also causes the parametera to be underestimated
(here, by 25%) and the productbt0 to be overestimated.

Experimental Data

The water1H dispersion from an aqueous solution of ca. 10
weight% BPTI is Lorentzian or nearly so (54). Under salt-free
conditions, it has been established that the dispersion is due to 4
buried water molecules and a few labile BPTI protons (at pH 4.5,
where the labile-proton contribution is minimal) (54). These water

and BPTI protons exchange with the directly observed bulk water
proton pool on a submillisecond timescale, but reside on the
protein long enough (.10 ns) to sense its rotational motion. A
quantitative analysis shows that these protons can account for the
value of theb parameter deduced from the dispersion fit (54). The
(mean) correlation timêtC& is also close to the expected rota-
tional correlation time of the protein under the experimental
conditions.

Addition of salt to the protein solution has a dramatic effect
on the dispersion profile, as illustrated in Fig. 3 for BPTI in 0.7
M NaCl. The dispersion not only increases 5-fold in magnitude
but also becomes highly stretched, extending to much lower
frequencies. The dramatic salt effect is undoubtedly due to
protein–protein interactions, but neither the precise nature of
these interactions, nor their dynamic consequences, is fully
understood at present. (The salt effect exhibits a high degree of
ion specificity, to be discussed elsewhere.) It has long been
recognized that the water relaxation dispersion is a sensitive
indicator of protein–protein interactions and several previous
1H NMRD studies have focused on this aspect (15, 16, 18, 21,
22, 56, 57). The first step in analyzing dispersion data from
strongly interacting protein solutions should be to establish
whether the effects are purely dynamic or if structural changes
are also involved. For example, can the salt effect in Fig. 3 be

FIG. 3. Dispersion of the water1H longitudinal relaxation rateR1 in aqueous solutions of 10 weight% BPTI at pH 4.5 and 300 K without any added salt
(or buffer) (E) and after addition of 0.7M NaCl (F). The relaxation rates were measured on a FFC instrument (Stelar) in the range 12 kHz–8 MHz and on
conventional tunable and fixed-field spectrometers in the range 7–200 MHz. The BPTI was obtained from Novo Nordisk A/S (Gentofte, Denmark) and was
exhaustively dialyzed to remove any salt. Protein solutions were made by dissolving the lyophilized protein in doubly distilled H2O and the added NaCl was
of .99.5% purity (Merck). The dispersion data were analyzed with the model-free approach (a) and the HK approach (b). Note the 5-fold scale difference
between the residuals panels.
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entirely attributed to slower protein tumbling or is part of the
effect due to a largerb, e.g., from water molecules trapped
between associating protein molecules? Ambiguities of this
kind can be neatly resolved by a model-free analysis.

The results of a model-free analysis of the1H dispersion
from BPTI in 0.7M NaCl are shown in Fig. 3a and in Tables
4–6. The curve in Fig. 3a is the optimal representation of the
38 R1 points (1% mean error). Four Lorentzian terms are
required and the convergence of the parameters is excellent
(see Table 4). The analysis is also robust; for example, the
parameter values are not significantly affected if the two high-
est-frequency points are omitted. The HK fit, shown in Fig. 3b,
is comparatively poor, as reflected in the 10-fold larger reduced
chi-square and the systematic variation of the residuals (note
the 5-fold difference of scale between Figs. 3a and 3b). Due to
the extensive stretching of the dispersion profile,t0 is more
than 4 times longer than̂tC&. Consequently, the staticb
parameter comes out a factor 4 too small in the HK analysis
(see Table 5). The salt-free dispersion is not far from Lorent-
zian (but the optimal representation is bi-Lorentzian) and,
therefore, the two methods of analysis produce similar results
(see Table 6).

What does this analysis say about the origin of the salt
effect? The model-free analysis tells us that salt-induced
protein–protein interactions produce a substantial slowing
down of protein tumbling, with a 4-fold increase of the
mean correlation timêtC& and the large (asymmetric) dis-
persion stretching indicates association beyond the oligomer
level. The structure of the individual protein molecules,
however, appears to undergo little change in the association
process sinceb varies by less than 40%. The HK analysis,
if accepted, would imply an even larger dynamic effect (t0

increases by a factor 13), but would also suggest a substan-
tial modification of the protein structure (perhaps a partial
unfolding that exposes the previously buried water mole-
cules) since the (apparent)b parameter decreases by a factor
2.6 on addition of salt (as opposed to the modest 40%
increase obtained from the model-free analysis). Thisqual-
itative discrepancy clearly illustrates the pitfalls of the em-
pirical approach that has been used in nearly all water1H
NMRD studies since 1976.

CONCLUDING REMARKS

We have demonstrated here that the widely used HK dis-
persion function is physically inconsistent. Despite claims to
the contrary, it is not the NMR analogue of the dielectric
Cole–Cole dispersion and it does not satisfy the Kramers–
Kronig relation. Moreover, the HK parameters do not have the
physical significance that is generally ascribed to them. As
shown by the example of BPTI in 0.7M NaCl, the mean
rotational correlation time and the mean-square fluctuation can
each differ by more than a factor 4 from the corresponding HK
parameters (t0 and A/t0). The HK function should therefore
not be used to analyze NMRD data.

The model-free approach introduced here for the analysis of
stretched dispersion profiles does not suffer from the limita-
tions of empirical approaches and multi-parameter models (of
uncertain validity). If the dispersion data are of reasonably high
quality, the model-free analysis provides the mean-square fluc-
tuation amplitudeC(0) (proportional tob), a purely static
quantity, the mean correlation timêtC&, and one or more
shape parameters. The model-free parameters have well-de-
fined physical significance and allow the static and dynamic
information content of the dispersion profile to be separated, as
for a Lorentzian dispersion. The model-free approach was
validated with the aid of synthetic data and was shown to be
robust and accurate.

The physical mechanism responsible for stretching of water
1H dispersion profiles in biological systems has not yet been
unambiguously established. Several mechanisms are possible
(3). If some of the buried water molecules that contribute to the
dispersion have residence timestW comparable to the rota-
tional correlation timetR of the protein, then the effective
correlation timetC is given by 1/tC 5 1/tR 1 1/tW. A tW

distribution can therefore produce a high-frequency tail in the
dispersion profile even if the protein undergoes free symmet-
ric-top rotational diffusion. This mechanism is probably rela-
tively unimportant and cannot account for the common obser-
vation of stretching to lower frequencies with a concomitant
increase of the dispersion magnitude. Likewise, effects of

TABLE 5
Accuracy of Model-Free and Hallenga–Koenig Analysis

of Water 1H NMRD Data for BPTI in 0.7 M NaCl

Parameter
Model-free
x 5 1/3

Model-free
x 5 0 Hallenga–Koenig

xr
2 0.7 0.7 7.3

a (s21) 0.2846 0.003 0.3716 0.003 0.3456 0.002
b (108 s22) 1.696 0.06 1.686 0.06 0.4146 0.004
^tC& (ns) 15.46 0.5 15.06 0.5 —
t0 (ns) 64.46 0.7 62.46 0.7 65.16 0.9
k — — 0.6776 0.005
l2 0.346 0.02 0.356 0.02 —
l1 0.776 0.01 0.776 0.01 —

TABLE 4
Convergence of Model-Free Analysis of Water 1H NMRD Data

for BPTI in 0.7 M NaCl

N xr
2 P(N) a (s21) b (108 s22) ^tC& (ns)

1 310 — 0.392 0.67 31.7
2 16 1.000 0.319 1.13 22.0
3 2.4 1.000 0.289 1.60 16.0
4 0.70 1.000 0.284 1.69 15.4
5 0.75 0.500 0.284 1.69 15.4
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asymmetric-top rotational diffusion should be undetectably
small for most globular proteins. A residence time distribution
can also produce dispersion stretching when the residence
times are comparable to the intrinsic relaxation times. This
mechanism should be most important for labile protein pro-
tons, which may dominate the water1H dispersion (54, 58). In
semisolid protein–water systems, such as gels, chemically
cross-linked proteins, and tissues, the proteins are not free to
reorient and the dispersion is then governed by proton (and
water) exchange dynamics. Since the exchange rates span a
wide range, the observed relaxation rate is dominated by pro-
tons with exchange rates comparable to the dipolar coupling
frequency (59). A distribution of (intermolecular) dipole cou-
plings then leads to dispersion stretching. This should be a
major effect in semisolid aqueous systems. In concentrated
protein solutions, the principal mechanism of dispersion
stretching is undoubtedly protein–protein interactions. NMRD
data contain valuable information about such interactions and
the model-free approach advocated here allows their dynamic
and structural consequences to be disentangled.
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