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Nuclear magnetic relaxation dispersion (NMRD) measurements
can provide valuable information about the dynamics and struc-
ture of macromolecular solutions and other complex fluids. A large
number of *H NMRD studies of water in concentrated protein
solutions and in semisolid biological samples have been reported.
The observed dispersion usually extends over a wide frequency
range and then cannot be described by a Lorentzian spectral
density function. We propose here a model-free approach for
analyzing such stretched dispersion profiles. Unlike the traditional
empirical fitting procedures, the model-free approach is based on
rigorous theory and produces parameters with well-defined phys-
ical significance. The model-free approach is validated with the
aid of synthetic relaxation data, showing that it is robust and
accurate, and is then applied to new water *H NMRD data from
solutions of the protein bovine pancreatic trypsin inhibitor (BPTI).
By separating the static and dynamic information content of the
relaxation dispersion, the model-free analysis shows that the dra-
matic salt effect observed in BPTI solutions is due almost entirely
to a slowing down of protein rotation with little change of protein
structure. An analysis of the same data in terms of the empirical
dispersion function used in most *H NMRD studies leads to a
qualitatively different picture. We demonstrate that this widely
used dispersion function is unphysical and that its parameters do
not have the physical meaning usually ascribed to them. o 1998
Academic Press
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INTRODUCTION

reported to date have been concerned with the relaxation of t
water *H (and more recently’H and *’O) resonance in bio-
logical systems ranging in complexity from dilute protein
solutions to intact tissued( 5). For relatively dilute protein
solutions, the dispersion is generally fou)l {o be of Lorent-
zian form, as expected for relaxation induced by rotatione
diffusion of nearly spherical noninteracting proteins. The firs
water *H relaxation dispersion profiles to be reported from
protein solutions§—8), however, extended over a much wider
frequency range than a Lorentzian dispersion (see Fig. 1
Subsequent watéi NMRD studies of biopolymer solutions,
gels, and tissues have shown that such a stretched dispers
shape is the rule rather than the exceptidn9q—29.
Qualitatively, it is clear that dispersion stretching can hav
several causes, including complex protein reorientational d
namics (due to structural heterogeneity induced by proteir
protein interactions), a distribution of proton exchange rate
(for buried water molecules and labile protein protons), or |
distribution of intermolecular dipole couplings (for immobi-
lized proteins) B). The quantitative analysis of stretched watel
'H dispersion profiles, however, is nontrivial. Two principal
approaches have been tried. In one, the dispersion shape f
lows from a microscopic model, the parameters of which ar
determined from a direct fit to the dispersion data. Unless tf
origin of dispersion stretching is well understood, however, th
physical significance of the derived parameters is questionab
The other approach is an empirical one, where the dispersi
data are parametrized by a convenient and physically plausit

Within the motional-narrowing regime, all informationMathematical function. The vast majority of wafet disper-

about molecular motions that can be derived from nuclear siil"s have been analyzed by an empirical 3-parameter functi
relaxation rates is contained in the spectral density funcfipn (Known as “the Cole-Cole expressior, ©, 17. Although this
To map out the frequency dependence of this function, tﬂénctlon has no a priori validity, the parameters are generall

relaxation rate must be measured over a wide range of m&¥
netic field strengths. Suafuclearmagneticrelaxationdisper-

erpreted as if they had a definitive physical significance. |
particular, the characteristic time derived from the frequenc

sion (NMRD) measurements can be carried out with fast fielhere the dispersion has decayed to half its maximum amp
cycling techniques 2) or with tunable and fixed-field tude is interpreted as a rotational correlation time.

spectrometers of conventional typ®.(Most NMRD studies

1 To whom correspondence should be addressed.

In the present work, we examine this empirical dispersiol
function and find that it is fundamentally inconsistent and ma
lead to qualitatively incorrect inferences about the behavior ¢

2 Current address: School of Physics, University of Hyderabad, Hyderabd8€ investigated system. We then describe a model-free 3

500046, India.

proach to the analysis of stretched dispersion profiles, whic
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----- P e C(—17) = C(1). [2]

The relaxation superoperator involves the complex-value
spectral density function (SDF)

Z(w) = fmdq' exp(—iwT)C(7), [3]

0

R (V,)/R,(0)

which may be decomposed as

Z(w) = J(w) — iIK(w). [4]
O‘o nnnnn i 1 W ERYIN i3 1 sl doddo L atial Ity .
104 10° 100 107 108 The real part oZ(w) is the usual SDF,
v, (Hz) )
FIG. 1. Dispersion of the watefH longitudinal relaxation rateR, in Jw) = f dr codwT)C(71), [5]
aqueous solutions of 15 weight% human apotransferrin at 29@)K&) and

0
28 weight% bovine serum albumin at 303 K)((8). The relaxation rate is

normalized by the measured rate at the lowest frequency (16.80s apo- . . ) . .
transferrin and 20.0 & for serum albumin). The curve is a Lorentzianthat determines the spin relaxation rates. For dipolar relaxatic

dispersion with a correlation time of 25 ns, as expected for the tumbling of a like-spin pair 1) and for quadrupolar relaxation in the
these proteins in dilute solution. effectively exponential regime3(), the longitudinal relaxation
rate R, depends on the resonance frequengyaccording to

we argue is preferable to both empirical analysis and multi- R, = 0% [0.2 J(wo) + 0.8 J(2wo)], [6]
parameter model fitting. In the model-free approach, the quan-

tltles_extra_cte_o_l from the dispersion data have a We"'def'ng\ﬁlerewmis the (dipolar or quadrupolar) rigid-lattice coupling
physmal_ 5|gn|f|c_ance and dp npt rely_ on any model assUMPaquency. The imaginary part @),
tions. With the aid of synthetic dispersion data, we demonstrate
that the model-free analysis is robust and accurate. We then
present new watetH dispersion data from BPTI solutions,
revealing a dramatic salt effect. These data are analyzed by the
model-free approach and by the empirical “Cole—Cole” ap-
proach. The parameter values derived by these two approaches . ) _ i
differ greatly and even lead to qualitatively different conclud'VeS MS€ to the dynamlg sh_|ﬂ:31), Whlc.h can affect the
sions regarding the origin of the salt effect. Imeshape b_ut not the Ior_wgltudlnal relaxation. _

Certain simple dynamic models, such as spherical-top rot

tional diffusion in an isotropic medium, lead to an exponentia
FUNDAMENTALS TCF

K(w) = f Jd’r sin(w7)C(7), [7]

0

The nuclear spin relaxation rate becomes frequency-depen- C(7) = C(0)exn(—|7l/ 8
dent when the motional frequencies modulating the spin—lattice () (Oyexp(—|rl/me), [6]
coupling are.cc_)mparable. to the Ieve_l spacings of the sDérr‘wd, hence. to a Lorentzian SDF,
system {). Within the motional-narrowing regime, the effect

of a fluctuating (classical) lattice variabM(t) on the spin

relaxation behavior can be fully described in terms of the time J(w) = C(0) e . 9]
correlation function (TCF) 1+ (w10)
In this simple case, the relaxation dispersiy{w,) provides
Clr) = (VO* VIt + 7). 11 P persiflwo) p

two distinct pieces of information about the investigated sys
tem: C(0) andr.. The initial TCF is the mean-square fluctu-
The TCF is a real-valued quantity and, for dynamic modedgion of the lattice variableC(0) = (|V|?); it contains infor-
obeying the detailed balance condition, is invariant under tinmeation about the equilibrium structure of the system but i
reversal: entirely independent of the dynamics. The correlation tipe
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on the other hand, is a purely dynamic quantity that provides €' (w) — €= —wK(w), [12a]
the time scale for thermal randomization of the lattice variable
V(t) (usually a function of molecular orientation).

In concentrated macromolecular solutions and other com-
plex fluids, the TCF usually decays nonexponentially. Thi§ Debye’s theory of dielectric relaxatio3€), isotropic rota-
may be due to heterogeneity at the molecular level, as m@nal diffusion leads to an exponential TCF of the same forn
result from protein association, or to collective motions invohas Eq. [8], withC(0) = €, — e.. and 7¢ identified as the
ing many coupled degrees of freedom, e.g., the undulation[¥¢bye rotational relaxation time. Consequently,
phospholipid bilayer membranes. In either case, the decay of
the TCF is slower than exponential and, hence, the decay of the

€'(w) = wl(w). [12b]

SDF is stretched out over a wider frequency range than for a €'(0) = e. = C0) e [132]
Lorentzian SDF. If the structural and dynamic complexities

i i i wT,
can be adequately modeled, it may be possible to determine the () = C(0) c [13b]

model parameters from a fit to the relaxation dispersion. In 1+ (w70)?

many cases, however, the functional form of the SDF is not
known a priori. A non_trivial pr_oblem then arises: How should The standard approach for analyzing the frequency-depe
the stretched dispersion profile be analyzed? In other worggnt dielectric response from non-Debye materials is to invok

What, if any, unique information about the system can ke continuous distributiorf(r.), of correlation times, i.e., the
extracted from the relaxation data? TCF is expressed as

EMPIRICAL DISPERSION FUNCTIONS

Dielectric Relaxation C(r) = C(0) j drc f(rc)exp(—|7|/7c). [14]

0
The problem of stretched dispersions was first encountered
in the dielectric relaxation of amOfphOUS solids and ViSCOlZ{&]e Simp|est version of this empirica| approach is to use
liquids (32, 33. The observable here is the frequency-depefyo-parameter distribution function with a characteristic time
dent complex dielectric consta#tt( ), conventionally decom- 7 and a dimensionless width parameter. The first function

posed as this kind to be introduced was the so-called log-normal distri
bution 32, 33,
e*(w) = €'(w) — i€ (w). [10]
_ _ _ _ _ 1 111 7c\ 12
The real (in-phase) part/ (), is the (relative) dielectric per- f(re) = o2ma? exp — 5| I PARE [15]

mittivity and the imaginary (90° phase-shifted) pafw), is
the dielectric loss factor. The frequency dependencies(a) . o i
and €'(w) are usually referred to as dielectric dispersion an'BhIS is a skewed dlSztI’IbutIOH, where the average correlatic
dielectric absorption, respectively, in analogy with the corrdMe: {7c) = T0€Xp(0~/2), exceeds the most probable corre-

. . ~ _ o 2 .
sponding optical phenomena. There is also a complete anal$giPn iMme.7c = 7oexp(—o~). The width parametes can be

with the dispersion and absorption components of the srilferpreted as the root-mean-square variation of the activati

induction decay in magnetic resonance. In all these cases, SRENalPy (in units ofkgT) for a process with a jump rate

dispersion and absorption components are linked by the KraffgScribable by transition-state theory. The SDK®) and

ers—Kronig relations, which follow directly from the linearity!<(«) resulting from a log-normat distribution have to be

and causality of the response of the system to a weak harmofy@luated numerically. o
A compact analytical representation with the same numb

perturbation 84). X )
Since polar molecules are much more strongly coupled th3hParameters (one more than in the Debye model) was intr

are nuclear spins, the theory of dielectric relaxation is mofisced by Cole and Coley),

complicated. If dipole—dipole correlations are neglected, how-

ever,e*(w) can be related to the electric—dipole TCF aS)(

€*(w) — €, = C(0) [16]

1+ (iwr)®’
€ () — €g= —iwZ(w), [11]
where the positive exponemt (=1) measures the degree of
where g, is the static relative permittivity and the complexstretching of the dispersion with respect to the Debye ca:s
dipolar SDFZ(w) is related to the electric—dipole TGK ) as (b = 1). Combination of Eqgs. [10], [12], and [16] yields for
in Eq. [3]. It then follows from Egs. [4] and [10] that the SDFs
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1 Lorentzian SDF (see Fig. 1). The log-normal distribution wa
Iw) =-C(0) Im[H(ino)b] used to analyze some of these early dispersion profiles,(
. 46), but the physical significance of the parameters in thi
_ C0) 1 (wTo)"sin(bm/ 2) empirical distribution remained obscure.

o1+ 2(wty)’codbm/2) + (wr)®’ [17a]  While the Cole—Cole distribution has been used to analyz
the anomalous temperature dependencg,adndT, (39, 42,

1 it has not, and cannot, be used to describe relaxation dispers

]. [17b] profiles. Like the log-normal distribution [15], the Cole—Cole

distribution [20] is skewed towards long correlation times (bu

is symmetric on a logarithmic scale). The wings of the Cole:

The empirical Cole—_CoIe function de;cribes dielectric relaysqo distribution, however, decay so slowly, asymtotically a:
ation data from a variety of systems with remarkable accura ¥.C)f(b+1>, that the first moment of the distribution diverges.

Yet, it has no a priori validity and is therefore nothing mor his is most readily seen from Egs. [17] and [18]. Setting
than a convenient representation of the data. 0 in Eq. [18], we obtain the general result

If the system can be modeled in terms of a continuous
distribution of correlation times, then the SDOKFw) corre-
sponding to the TCF in Eq. [14] is

1
K(w) = C(0) a Re{l-l—(iwﬂ'o)b

J(0) = C(0)(7¢). (21]

. Taking the limitw — 0 of Eq. [17a], however, we find tha¢0)

_ e ~ w”1 — o« for b < 1. This is evidently due to the

Jw) = C(O0) J dre fre) 15 wTe)?’ [18] divergence of 7c). While a 7 distribution with a divergent
first moment is not necessarily unphysical, a divergent rela

, o ation rate surely is. Within the context of nuclear spin relax
Fuoss and K|rkyvood showed that this integral transform can lélﬁon, a divergent SDF indicates that the motional-narrowin
inverted analytically $8): condition is violated and, hence, that a more general theory |
spin relaxation must be used)( This difficulty does not
appear in the dielectric context because the measured dielect
response is related to the Fourier transform of the time deri
ative of the TCF, rather than of the TCF itself. This gives rise
In principle, this result would allow a unique. distribution to to the o factor in Egs. [11] and [12], which removes the
be extracted from experimental dispersion data. In practi¢éyergence.
however, numerical difficulties severely limit the usefulness of
the inversion formula. Nevertheless, it can be used to calculdtée Hallenga-Koenig Function
the Tc distribution corresponding to any integra_ble analytic p very large number ofH NMRD studies have been per-
function J(w). For example, the Cole-Cole SDF in Eq. [178)5rmed on water in biological and colloidal systems, ranging

0

f(ro) = — % IMJ(w =il70)]. [19]

corresponds to the distribution functio87) from macromolecular solutions to gels and tissues. The dispe
_ sion is nearly always found to be stretched out over a wide
frg) = 1 sin(br) [20] frequency range than predicted by the Lorentzian SDF in E

O =

[9]. The vast majority of these stretched dispersion profile

have been analyzed in terms of an empirical dispersion fun

tion refered to as “the Cole—Cole expressioa; §—29. First
Many of the results first derived in a dielectric context can bgtroduced by Hallenga and Koenig, this empirical functior

directly carried over to nuclear spin relaxation. The initidiakes the formg)

motivation for invoking correlation time distributions in NMR,

271 cogbw) + coshb In(7c/79)]"

Nuclear Spin Relaxation

however, was not to analyze stretched dispersions but to ac-

count for an unexpected temperature dependendg ahdT, Jw) = A RE[H(,Q,TO)K]

for polymers and adsorbed water. The log-normal distribution

was thus used to rationalize anomalies inThET, ratio and in B 1+ (w7g)“cog k! 2)

the temperature dependencelgfnear the temperature of the T 1+ 2(wTg)fcodkm 2) + (wTe) " [22]

T, minimum 39-45. The Cole—Cole SDF in Eg. [17a] has
also been used in this connectid9( 42.

The earliest reported relaxation dispersion profies&), of In addition, one usually introduces the highly accur&e ljut
the water'H resonance in concentrated protein solutions, weuenecessary, approximation of replacing the linear combin:
distinctly stretched and could not be adequately described bgian 0.2J(w,) + 0.8J(2w,) in Eq. [6] by (V3 w,). Like the
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Cole—Cole function in Eg. [17a], the Hallenga—Koenig (HK) 1 -

function [22] reduces to the Lorentzian SDF [9] in the trivial Jw) = > Ref dr exp(—iwT)C(7). [24]
limit k = 1 if one identifiesA with C(0) 7. Furthermore, for o

any k value in the allowed range € « = 1, the HK function

drops to half its maximum value ab = 1/7, as does a py integrating both members of this equation owerinter-
Lorentzian SDF at = 1/7c. (These frequencies also defingnanging the order of integration, and recognizing the Fouri
the inflection points of the dispersion profiles when plotted QRtegral representation of the delta functionm&r) =

a logarithmic frequency scale.) [ ..dwexp(—iwT), we obtain
It was acknowledged at the outset that the HK function has

no a priori validity @). Yet, the parameter& and 7, extracted B
from_fits to di_spersion data are generally assigned definite f do I(w) = EC(O). [25]
physical meanings and quantitatively compared to other data. 2
(Apparently, no attempt has been made to physically interpret °
the parametek.) In particular, when water relaxation disper- . . o
sionFs) from prott)ain s%lutions are analyzegjs always iden'fi’— The |nte.gral of the HKjEnctlon [22.]’ however, is divergent for
fied with the rotational correlation time of the protein. k < 1 since)(w) ~ o™ asymptotically. In fact,

It has frequently been stated, @-11, 17, 21, 22, 29and is
apparently widely believed, that Eqg. [22] is the direct analogue * A
of the Cole—Cole dispersion used to analyze dielectric relax- f do J(w) = 27 sind (1 — «)m/ 2]
ation data and, therefore, that the two expressions have the 0
same physical basis. A comparison of Egs. [17] and [22],
however, shows that the HK function differs in important way# the Lorentzian limitkx = 1, this yields with Eq. [25]A =
from the Cole—Cole function. Furthermore, despite claims f6(0) 7o, as expected. Fok < 1, however, the integral di-
the contrary 4, 17), the HK function does not satisfy theverges and, sinc€(0) = (|V|*) must be finite, it follows that
Kramers—Kronig relation, as required for any physically adhe HK function is unphysical fok < 1.
missible SDF 1).

The Kramers—Kronig relation expresses a general connec- MODEL-FREE ANALYSIS
tion between the in-phase (dispersion) and 90° out-of-phase
(absorption) linear response of a causal systdd). (In our General Principles
notation, it takes the form

lim o~ [26]

w—>

If empirical dispersion functions (whether unphysical or not
are dismissed, what sense can then be made of stretct

20 [~ J(w") relaxation dispersion data when the system is not sufficient
Klo)=-—| do" 5 ()2 [23]  well understood to formulate a realistic model? If the range c
0 the dispersion data is wide enough to define the low- an

high-frequency plateaus reasonably well, several rigorous

Since defined physical quantities can actually be extracted witho
invoking a model. One such quantity is the integral of the

. , dispersion profile, which, according to Eq. [25], yields the

20 do’ cogw'7) - mean-square fluctuation

— o ———3=SsinwT),
T 0’ — (0')?
0

2 =]
it is clear that any pair of SDF}w) andK(w) derived from ) = WJ do J(w). 271
0

a TCFC(7) by cosine and sine transforms, as in Egs. [5] and

[7], satisfies the Kramers—Kronig relation. Since the Cole—Cole o ) )
functions in Eq. [17] can be so derived (from an exponentiaf® natural definition of an “average” motional time scale
TCF averaged over the. distribution [20]), they must there- associated with a stretched dispersion is the time integral of t
fore satisfy the Kramers—Kronig relation. The HK functioféduced TCF,

with k < 1, however, cannot be derived from any physically

admissible TCF. This follows directly from a general condition ®

on the SDF of a stationary random variablé), namely that (10) = J dr C(7)/C(0) = J(0)/C(0), [28]
the integral ofJ(w) over all frequencies is proportional to the 0

mean-square fluctuatidfV|?). Using the time-reversal invari-

ance in Eq. [2], we can express Eg. [5] as obtained from the low-frequency dispersion platdé0) and
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the dispersion integral. For a heterogeneous system witlthas intersectd(w) at the frequencyw = 1/7y, where both
spatial distribution of isotropic rotational correlation timesSDFs have decayed to half of the low-frequency lid{id). It
(7¢) In EqQ. [28] is simply the population-weighted average, dsllows from Egs. [27], [28], and [30] that

in Eq. [21]. If the nonexponentiality af () reflects collective

motions{t) is an average of mode correlation times weighted . " ”
by the corresponding mode amplitudes. 0 J dw J(w) J dw Jo(w). [31]
The approach described here has some important advantages (1c) 0

over conventional strategies for analyzing stretched disper-

sions. First, the quantitieS(0) and(r) are rigorously defined /i, 7, defined as in Eq. [29], the integral 8fw) is generally

in terms of the fundamental TCF and therefore have wells ooy than that of the reference Lorentzian, so that (rc).
defined physical significance. This is not the case for ther, o asymmetry of a stretched dispersigw) relative to the

parameters and 7, in the HK function. Second, the présentqtorance Lorentziad,(w) may be characterized by the two
analysis separates the static and dynamic aspects of the 'nzﬁféntities

mation content. In particular, the mean-square fluctuati(®)

is rigorously independent of the dynamics, i.e., the rates of

molecular motions. As illustrated under Applications, this sep-

aration of information can provide important clues about the

physical mechanism responsible for a stretched dispersion.

Third, the quantitie€(0) and(r.) are model-independent and o
vz

1/mo w
A= 2f ~[3() — A1), [32a]

therefore not biased by any unproven mechanistic assumptions.
In contrast, a direct multiparameter fit to a stretched dispersion
provides nonunique results that stand and fall with the legiti-

macy of the assumed model. A complete interpretation of tiyg 5 plot of J(w)/J(0) versus Inw, A_/2 and\ , /2 are the areas
data, of course, requires that a model be introduced at Softehe two regions bounded by(w) and Jo(w) below and

stage. The approach we advocate is to first determine $ove their intersection, respectively (see Fig. 2a).
model-free quantitie€(0) and(r), which have indisputable

physical significance, and further interpret these quantities omyimerical Implementation

when and if a realistic model can be formulated. Having .

isolated the purely static information content of the dispersion 1© determine the model-free paramet€(), {7c), 7o, and

in the form ofC(0) is then a decisive advantage, because tfe: @ disCrete set of noisy data points must be integrated. TF

static (structural) features of a complex system are usually £g!IS for intérpolation and smoothing, which may be accom

easier to model than the dynamic ones. pllshed_m many ways. One possmll!ty, whlch_ we haV(_a founc
While a Lorentzian dispersion is fully characterized by twiseful, is to introduce a continuous interpolation functlon_ tha

parameters, a stretched dispersion contains more informatifPrésents the data to an accuracy commensurate with {

In many cases, such as watét NMRD data from macromo- Measurement error. The functional form should be physicall

lecular solutions, the dispersion can be adequately represerti@ySible and capable of representing most experimental d
by 3 or 4 parameters. In addition to the quantit@®) and Persion profiles with a small number of parameters (compare

(o), it should therefore be possible to extract one or twio the number of data points). The natural choice is the mult

independent measures of dispersion shape. Model-independdigntzian form

shape indicators can be defined in many ways. A reasonable

approach is to characterize the shape of a stretched dispersion N T

J(w) with reference to a Lorentziady(w) with the same low- Jw) =D, ¢, ﬁnz [33]

. _y X Ty

and high-frequency limits aX w) and with the same frequency n=1

at half amplitude. The inverse of this frequency defines a

characteristic timery that can be obtained from the conditiorwhich can represent the SDF of any stationary Markov proce:

V(t) obeying detailed balancetY). This covers virtually all

cases of interest, including fast exchange processes amc

discrete states or sites in a heterogeneous system (describec

a discrete master equation) and all types of single-particle

The Lorentzian collective dynamics governed by a Fokker—Planck equatiol
e.g., free rotational diffusion of an asymmetric-top rot8)(
restricted rotational diffusion4@), translational diffusion on

J(0) [30] curved surfaces5(Q), and collective director fluctuation§1).
1+ (wm)? The 2N parameters of the multi-Lorentzian representatiol

%‘” [J(w) — Jo(w)]/3(0. [32b]

1/

Iw = 1/7) = 3 J(0). [29]

Jo(w) =
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FIG. 2. Synthetic relaxation dispersion data analyzed with the model-free approach (a) and the HK approach (b). A Lorentzian dispersion with th
frequency at half amplitude as the fitted dispersion curve is also shown in (a). The shaded areas are proportional to the shapepaeardaters

[33] can be determined by any nonlinear parameter estimatioonstruct an optimall-Lorentzian representation of the data in
method, e.g., the Levenberg—Marquardt algoritts8).( This a well-defined way.

numerical problem is analogous to multiexponential decompo-The multi-Lorentzian representation has the further appe
sition of a decaying signal, such as the free induction decajf,being analytically integrable. Substituting Eq. [33] into Egs
and has been amply discuss&3)( The numbeN of Lorent- [27]-[29] and [32], we obtain

zians to be included can be objectively determined by means of

the F test §2). A fit of N Lorentzian terms tdM data points co)=>c¢ [35]
J(w;) with errorsg; yields the reduced chi-square merit func- , "
tion
<TC> = 2 CnTn/ 2 Cn! [36]
2 n n
1 Mo N C,T,
2 - - - N nin
XN = (v an) 2 g2 [0 = 24y no= S o1+ (g S e @7

(34]

Another fit is then made witthN + 1 Lorentzians, yielding With 7, determined by the implicit relation
x2(N + 1), and if the fit was substantially improved the ratio

F = x2(N)/x2(N + 1) will be large. If the measurement errors CaTn .
are normally distributed, the quantiB/follows the F distribu- > 1+ ()2 2 > CoToe [38]
tion and the probability of observing a smallBr value is n n

PN+ 1)=1-1,(M—2N - 2)/2, M — 2N)/2), with

| .(a,b) the incomplete beta function and = x2(N + 1)/ For small deviations from Lorentzian shapg,= (t2)/{7c),
[X2(N) + x?(N + 1)]. The additional Lorentzian term is which always is=(7c), andA_ + A, = (tcXTe)/(72)? — 1,
accepted only if this probability exceeds a preassigned cutefith (1) = 3, ¢, ™/, ..

value,P,. With P, = 0.90, forexample, a fourth Lorentzian The multi-Lorentzian fit provides error estimates for thé 2
term requires a 2.5-fold reduction gf for 20 data points but parameters §,,7,}, but these errors are not independent anc
only a 34% reduction for 100 points. Starting wkh= 1 and therefore not suitable for estimating the errors in the mode
successively adding terms unl(N + 1) < P,, we can thus free parameters. The latter can be rigorously calculated by tl



8 HALLE, JéHANNESSON, AND VENU

Monte Carlo method52). In this method, the §,,, ..} obtained TABLE 1

from a fit are regarded as the true values of these parameters. Convergence of Model-Free Analysis of Synthetic Data

A synthetic data sel(w;), i = 1,2, ... ,M, is then generated ) - -

by computing eaci(w,) from Eq. [33] with the “true” param- Xr PIN) a7 paPs™) (7o) (ns)
eter values and adding a “measurement error” by generatinga  gg _ 0.692 3.11 15.1
random number from a normal distribution, the variance of 3.3 1.000 0.609 4.52 12.0
which is determined by the actual measurement erfoA fit 3 1.10 0.997 0.582 5.11 10.8
to these synthetic data yields a new parameter sgir{}, 4 112 0.570 0.581 5.15 108

from which the model-free parameters are calculated according

to Egs. [35]-[38]. By repeating this procedure many times, one

obtains an ensemble of values for each model-free parametie, observed resonance (“unlike” spins). The effect of cros:

from which the error at a given confidence level can readily elaxation (with “unlike” spins) on the measur& is negli-

obtained. gible in protein solutions4) and is therefore ignored here.
We emphasize that the parameters, {,} should not, in We shall also analyze the dispersion data with the (incor

general, be ascribed physical significance. The multi-Lorersistent) HK function, expressed on the conventional form

zian representation is merely a convenient mathematical device

used in an intermediate step of the model-free analysis. Only if

independent information suggests that the system can actually Ri(wp) = a + B0 RQ[H(I@COT)K] [40]

be modeled by a fixed number of Lorentzians should a direct veroTe

physical interpretation of the parameters {r,,} be attempted. In the original notation of Hallenga and Koeni§)( « =

UT,w + D, By = A, 1o = 1/(27V3 V), andk = /2.
APPLICATIONS (The HK exponeni3 should not be confused with our mean-

square fluctuation parametgr) For the purpose of quantita-

In this section, the model-free approach is first validated ti’Mer comparing the HK and model-free approaches, we s
analyzing synthetic relaxation dispersion data and then applied-"q i, Eqg. [39], which then is virtually indistinguishable
to new'H NMRD data from solutions of the well-studied 6.5rom ®)

kDa protein bovine pancreatic trypsin inhibitor (BPTI). The
results of the model-free analysis are also compared with the
results obtained with the widely used HK function. Although
we focus on the longitudinal relaxation rat, here, the
model-free approach can, of course, also be applid’), tdata
(which, however, rarely are used in NMRD work).

Ri(wo) = a + B J'(\J/§ wo). [41]

For the model-free analysis of experimental data, however, v
retain the full expression [39] and set= 1/3, asfound for

1 A .
To adequately characterize a significantly stretched disp@@ter H relaxation in BPTI solutions3). (The full Eq. [39]

sion, the relaxation rate must be measured over at Ieasf:%1 also be rather accurately approximated by Eq. [41], b

decades in frequency. This can currently be achieved only erch slightly redefined parameters4).)

ffast fi(_ald-cycling _(FFC) technique®)( possibly in cqm_bina- Synthetic Data

tion with conventional measuremeng).(The vast majority of

NMRD data reported to date are FFC studies of wdtér ~ The convergence, robustness, and accuracy of the mod
relaxation in aqueous biopolymer samples. For isotropic sysee approach has been tested against a range of synthetic c
tems, such as protein solutions, the longitudittélrelaxation sets. The results of a typical validation test are shown in Fig. 2
rate due to fluctuating magnetic dipole—dipole couplings c&md in Tables 1-3. The dispersion comprisesR30values

be expressed ad,54) evenly spaced on a logarithmic frequency axis and generat
with the aid of Egs. [33] and [39]. The mean erroRpis 2%.
Ry(wo) = a + B{(1 — )[0.2(wg) + 0.8(2wq)] Seven Lorentzian terms were included with the values

approximately logarithmically spaced in the range 3-200 n

+ x[0.2j(0) + 0.3j(wo) + 0.6](2wo) ]}, [39] and with the weights adjusted to ma&er,, the same for all 7

terms. The proportionality constant linkifgyandC(0) was set

to a value representative of watk relaxation in a concen-
whereq is the part ofR; that remains in the extreme-motional{rated protein solution. The errors in the model-free paramete
narrowing regime up to the highest sampled frequency. Hexere determined from 1000 Monte Carlo realizations and al
we have also introduced the reduced &) = J(w)/C(0), quoted at a confidence level of 68.3% (one standard deviatior
so the parameteB is proportional to the mean-square fluctu- Figure 2a shows the optimal representation of the dat
ationC(0). Furthermorex denotes the fraction ¢£(0) thatis based on 3 Lorentzians. A fourth Lorentzian was rejected b
due to dipole couplings with protons that do not contribute the F test (see Table 1). The drastic reduction of the probabili
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TABLE 2
Robustness of Model-Free Analysis of Synthetic Data
e N X P(N) P(N+ 1) a(s™ B(1Ps™?) (1) (ns)
0 3 1.10 0.997 0.570 0.58& 0.01 5.1+ 0.2 10.8+ 0.3
1 3 1.11 0.997 0.579 0.5& 0.01 5.2+ 0.2 10.6= 0.4
2 3 1.15 0.995 0.521 0.57 0.02 5.3+ 0.2 10.4+ 0.5
3 3 1.14 0.981 0.571 0.6&= 0.02 4.9+ 0.3 11.1+ 0.6
4 3 1.16 0.970 0.496 0.56= 0.04 5.4+ 0.4 10.2= 0.7
5 3 1.28 0.872 0.619 0.66- 0.04 4.4+ 0.2 12.4+ 0.7
6 2 1.28 1.000 0.710 0.86- 0.03 3.2+ 0.1 16.5£ 0.6
6° 3 1.04 0.962 0.568 0.6@- 0.01 4.7+ 0.2 11.8+ 0.4
10° 3 1.03 0.983 0.494 0.58 0.01 5.1+ 0.2 10.4+ 0.5

2 Number of data points omitted from the high-frequency end of the dispersion.
® Highest-frequency point retained.
¢ Data points omitted from the low-frequency end of the dispersion.

P(N), here from 0.997 for the optimal 3-Lorentzian represen- Table 3 shows that the model-free parameters can be ac
tation to 0.570 forN = 4, is typical. The choice of cutoff rately determined from dispersion data with 2% random erro
probability P, is therefore not critical. We recommend a valu&ince the data were generated wxh= 1/3 in Eq. [39] (as
in the range 0.8—0.9; rare borderline cases should be examieggected for waterH relaxation in protein solutions56))
individually. The model-free parameters converge rapidly tohile x = 0 was used for the fits (to allow a direct comparisor
their final values and are stable when one more Lorentzianwith the HK fit), the true values of the model-free parameter
added to the optimal representation (see Table 1). were determined from a separate multi-Lorentzian fit (with
Since experimental dispersion data are typically more or [e8f to a synthetic data set generated with the samger{}
logarithmically spaced, the integral of the dispersion profile j[garameters but with negligible “measurement error.”
most sensitive to the quality of the high-frequency points. The fit of the HK dispersion function [40] to the same
Inaccurate results can be expected if a high-frequency plateguthetic data set is shown in Fig. 2b. As expected, thi
is not evident in the data. To investigate the robustness of #n@arameter function does not fit the data as well as tf
method in this regard, we successively removed data poifftparameter function employed in the model-free analysi:
from the high-frequency end of the dispersion. For the dataTtis is reflected in the systematic variation of the residuals ar
Fig. 2, 4 points can be removed without much effect on the the larger reduced chi-square. More importantly, éhand
model-free parameters (see Table 2). When 6 points have bggsarameter values are substantially in error (see Table 3). T
removed, the optimal representation becomes bi-Lorentziaast determined parameter ig, which in both approaches
and the parameter values change substantially. However, if #ieply defines the frequency of half amplitude but does nc
highest-frequency point is retained and the following 6 pointsave a simple physical interpretation. Singgexceeds the
are removed, the model-free parameters are within 10% of thell-defined mean correlation time.) to an extent (here, a
results obtained with all 30 points. The low-frequency poinfactor 2.3) that depends on how stretched the dispersion is, t
are even less critical; removing the 10 lowest-frequency poirdgémmon practice4, 9, 11, 12, 15, 16, 18-22, 28, Pof
hardly affects the model-free parameters at all. identifying 7, with a macromolecular tumbling time is ques-
tionable. Moreover, when the prefactor (usually denotedpy
of the dispersive term in Eqg. [40] is divided by to obtain a
static quantity (here denoted I8) proportional to the mean-
square fluctuation, a correspondingly large systematic error
introduced inB. We emphasize that this is not merely a

TABLE 3
Accuracy of Model-Free and Hallenga—Koenig Analysis
of Synthetic Data

Parameter True value Model-free Hallenga—Koenigjuestion of how to define a characteristic time in a useft
R manner. The prefactor measures the zero-frequency KD
;(r(sfl) o562 1-3058(2' 0:0? o 4:2;’% o1 = C(0)(7o). If this quantity is divided byr, rather than by
B (10°s?) 500 51+ 0.2 23+ 0.1 (7¢c), one clearly does not obtain the mean-square f!uctgatlc
(&) (ns) 11.2 10.8+ 0.3 _ C(0), asgenerally assumed. For the synthetic data in Fig. Z
7o (NS) 27.3 25.6+ 1.0 25.2+ 0.7 the HK analysis thus underestimates the {Bugy more than a

K — — 0.69+0.01 factor 2. Since the microscopic interpretation of fh@aram-
A 0.607 055+ 0.05 - eter has been clarified only recentfy, 6, 55, the systematic
Ay 0.695 0.66+ 0.03 —

underestimation o by the HK approach has gone unnoticed.
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FIG. 3. Dispersion of the watetH longitudinal relaxation rat®, in aqueous solutions of 10 weight% BPTI at pH 4.5 and 300 K without any added s:
(or buffer) ©) and after addition of 0.M NaCl (@). The relaxation rates were measured on a FFC instrument (Stelar) in the range 12 kHz—8 MHz an
conventional tunable and fixed-field spectrometers in the range 7-200 MHz. The BPT| was obtained from Novo Nordisk A/S (Gentofte, Denmark) a
exhaustively dialyzed to remove any salt. Protein solutions were made by dissolving the lyophilized protein in doubly digilextdHhe added NaCl was
of >99.5% purity (Merck). The dispersion data were analyzed with the model-free approach (a) and the HK approach (b). Note the 5-fold scale dif
between the residuals panels.

Any dispersion that can be expressed as a sum of Lorentand BPTI protons exchange with the directly observed bulk wat
ans, and this includes virtually all cases of interest, varies pton pool on a submillisecond timescale, but reside on th
1 — constw and ~w, ? at low and high frequencies, respecprotein long enough>10 ns) to sense its rotational motion. A
tively. The HK dispersion (withk < 1) has a much weaker quantitative analysis shows that these protons can account for :
frequency dependence in both of these limits: tonstwg and  value of theB parameter deduced from the dispersiorii#(The
~wyg “, respectively. The HK function therefore has difficultymean) correlation timér.) is also close to the expected rota-
in reproducing the low- and high-frequency plateaus of tnal correlation time of the protein under the experiment
stretched dispersion (see Fig. 2b). In the many previous applinditions.
cations of this function, this deficiency has usually not been aggition of salt to the protein solution has a dramatic effec
evident since the (mostly FFC) data rarely extend to sufiy the dispersion profile, as illustrated in Fig. 3 for BPTI in 0.7
ciently high frequencies to see the high-frequency plateau afjd\ac|. The dispersion not only increases 5-fold in magnitud
often show considerable scatter at the lowest frequenciés. ¢+ 4150 becomes highly stretched, extending to much low:
dispersions from fissue do not even exhibit a low-frequengy, . ,encies. The dramatic salt effect is undoubtedly due |

'p:)[ategg.). The hlgh—frbelqufe nc%/hslo dpe of the HK :L{[rr]]ctlcgjp seen (g}otein—protein interactions, but neither the precise nature
'9. 'S responsible for the divergence ot Ihe CISpersion,, .o interactions, nor their dynamic consequences, is ful

integral and also causes the parametéo be und_erestlmated understood at present. (The salt effect exhibits a high degree
(here, by 25%) and the produptr, to be overestimated. . i .

ion specificity, to be discussed elsewhere.) It has long bee
recognized that the water relaxation dispersion is a sensiti
indicator of protein—protein interactions and several previou

The waterH dispersion from an aqueous solution of ca. 18H NMRD studies have focused on this aspéd, (16, 18, 21,

weight% BPTI is Lorentzian or nearly s&4). Under salt-free 22, 56, 5. The first step in analyzing dispersion data from
conditions, it has been established that the dispersion is due ®tngly interacting protein solutions should be to establis
buried water molecules and a few labile BPTI protons (at pH 4#hether the effects are purely dynamic or if structural change
where the labile-proton contribution is minimaby). These water are also involved. For example, can the salt effect in Fig. 3 b

Experimental Data
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TABLE 4 CONCLUDING REMARKS
Convergence of Model-Free Analysis of Water *H NMRD Data
for BPTI in 0.7 M NaCl We have demonstrated here that the widely used HK di
persion function is physically inconsistent. Despite claims tt
N Xt P(N) a(s)  B@ACs®) (10 () the contrary, it is not the NMR analogue of the dielectric
1 310 . 0.392 0.67 317 Cole.—CoIe Fhspersmn and it does not satisfy the Kramers
2 16 1.000 0.319 113 2o Kronig relation. Moreover, the HK parameters do not have th
3 2.4 1.000 0.289 1.60 16.0 physical significance that is generally ascribed to them. A
4 0.70 1.000 0.284 1.69 15.4 shown by the example of BPTI in 0. NaCl, the mean
5 0.75 0.500 0.284 1.69 154 rotational correlation time and the mean-square fluctuation c

each differ by more than a factor 4 from the corresponding Hl
parameters#, and A/7y). The HK function should therefore

entirely attributed to slower protein tumbling or is part of th&t be used to analyze NMRD data. _
effect due to a largeg, e.g., from water molecules trapped The model-free approach introduced here for the analysis

between associating protein molecules? Ambiguities of tiif€tched dispersion profiles does not suffer from the limite
kind can be neatly resolved by a model-free analysis. tions of empirical approaches and multi-parameter models (

The results of a model-free analysis of the dispersion uncertain validity). If the dispersion data are of reasonably hig
guality, the model-free analysis provides the mean-square flu

from BPTI in 0.7M NaCl are shown in Fig. 3a and in Table% tion amplitudec(o rooortional t relv stafi
4—6. The curve in Fig. 3a is the optimal representation of fhaation ampitude (0) (proportional to), a purely static

38 R, points (1% mean error). Four Lorentzian terms ar Uantity, the mean correlation timerc), and one or more

required and the convergence of the parameters is excellsn"f‘pe pargmetgrs.. T he model-free parametgrs have We"'f

. ) ined physical significance and allow the static and dynami
(see Table 4). The analys-|s 'S also robust, fqr example,_ ! ormation content of the dispersion profile to be separated, :
parameter values are not significantly affected if the two hig > a Lorentzian dispersion. The model-free approach we
est-frequency points are omitted. The HK fit, shown in Fig. 39

. ) . lidated with the aid of synthetic data and was shown to b
is comparatively poor, as reflected in the 10-fold larger reducg ust and accurate

chi-square gnd the systematic variatioq of the residuals (notel-he physical mechanism responsible for stretching of wate
the 5-fold difference of scale between Figs. 3a and 3b). Due1q yispersion profiles in biological systems has not yet bee
the extensive stretching of the dispersion profilgis more \,nampiguously established. Several mechanisms are possi
than 4 times longer thakrc). Consequently, the stati® (3) |fsome of the buried water molecules that contribute to th
parameter comes out a factor 4 too small in the HK a”aly%?spersion have residence timeg, comparable to the rota-
(see Table 5). The salt-free dispersion is not far from Lorenfpna| correlation timerg of the protein, then the effective
zian (but the optimal representation is bi-Lorentzian) andgrrelation timerc is given by 1fc = 1/rg + 1/7y. A Ty
therefore, the two methods of analysis produce similar resuftribution can therefore produce a high-frequency tail in th
(see Table 6). dispersion profile even if the protein undergoes free symme
What does this analysis say about the origin of the sgfg-top rotational diffusion. This mechanism is probably rela:
effect? The model-free analysis tells us that salt-inducégely unimportant and cannot account for the common obse
protein—protein interactions produce a substantial slowingtion of stretching to lower frequencies with a concomitan
down of protein tumbling, with a 4-fold increase of theéncrease of the dispersion magnitude. Likewise, effects «
mean correlation timér.) and the large (asymmetric) dis-
persion stretching indicates association beyond the oligomer

level. The structure of the individual protein molecules, TABLE 5
however, appears to undergo little change in the association Accuracy of Model-Free and Hallenga—Koenig Analysis
process sincg varies by less than 40%. The HK analysis, of Water *H NMRD Data for BPTI in 0.7 M NaCl
if accepted, would imply an even larger dynamic effegf ( Model-free Model-free
increases by a factor 13), but would also suggest a substaiyameter X = 1/3 X =0 Hallenga—Koenig
tial modification of the protein structure (perhaps a partiat
unfolding that exposes the previously buried water mole? i 0.7 0.7 7.3
cules) since the (apparerg)parameter decreases by a facto gog) 2 Ofggf 8'823 0'1358% 8'823 8'21"4% 8'382
2.6 on addition of salt (as opposed to the modest 40;1/%) (nz) 154+ 0.5 150+ 0.5 T
increase obtained from the model-free analysis). Thial- 7, (ns) 64.4= 0.7 62.4+ 0.7 65.1= 0.9
itative discrepancy clearly illustrates the pitfalls of the emx — — 0.677= 0.005
pirical approach that has been used in nearly all waker *- 0.34£0.02 0.35+ 0.02 -

Ay 0.77+0.01 0.77+ 0.01 —

NMRD studies since 1976.
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TABLE 6
Salt Effect on Water *H Dispersion in BPTI Solution: Model-Free versus Hallenga—Koenig Analysis

Model-free & = 0) Hallenga—Koenig

Parameter No salt 0.7M NacCl No salt 0.7M NacCl
X2 1.8 0.7 1.8 7.3
a(sh 0.355+ 0.004 0.371* 0.003 0.321*+ 0.007 0.345* 0.002
B (10B s’z) 1.22+ 0.06 1.68+ 0.06 1.08+ 0.05 0.414+ 0.004
(7c) (ns) 4.0+ 0.2 15.0+ 0.5 — —

75 (NS) 5.1+ 0.2 62.4+ 0.7 49+ 0.2 65.1+ 0.9

asymmetric-top rotational diffusion should be undetectab®p. S.H. Koenig, R. G. Bryant, K. Hallenga, and G. S. Jacob, Biochem-
small for most globular proteins. A residence time distribution Sty 17, 4348 (1978).

can also produce dispersion stretching when the residergeS: H- Koenig, in “Water in Polymers” (S. P. Rowland, Eds.), Vol.
times are comparable to the intrinsic relaxation times. This 127 P- 157, Am. Chem. Soc., Washington, DC (1980).

mechanism should be most important for labile protein pré? i'l H1'7§°(‘31r;;g’3)R' D. Brown, 1. Bertini, and C. Luchinat, Biophys. J.

tsoennii,svglri]:ﬂ(:h may. d_omlnate the WalJEH dISperSIOn 54’ 58' In_ ]]f S. H Koenig, R. D..Brown, D. Adams, D. Emerson, and C. G.
protein—water systems, such as gels, chemically \y,rrison. invest. Radiol. 19, 76 (1984).

cross-linked proteins, and tissues, the proteins are not free jog Koenig and R. D. Brown, Magn. Reson. Med. 1, 437 (1984).
reorient and the dispersion is then governed by proton (apd ¢ Conti, Molec. Phys. 59, 449 (1986).

water) exchange dynamics. Since the exchange rates spag a; Conti, Molec. Phys. 59, 483 (1986).

wide range, the observed relaxation rate is dominated by P9 s. H. Koenig and R. D. Brown, in “NMR Spectroscopy of Cells and
tons with exchange rates comparable to the dipolar coupling organisms” (R. K. Gupta, Ed.), Vol. 2, p. 75, CRC Press, Boca
frequency $9). A distribution of (intermolecular) dipole cou-  Raton, FL (1987).

plings then leads to dispersion stretching. This should belg@ H.H. Raeymaekers, H. Eisendrath, A. Verbeken, Y. Van Haverbeke,
major effect in semisolid aqueous systems. In concentrated and R. N. Muller, J. Magn. Reson. 85, 421 (1989).

protein solutions, the principa| mechanism of dispersio’.ﬁ). 1. Bertini, C. Luchinat, R. D. Brown, and S. H. Koenig, J. Am. Chem.
stretching is undoubtedly protein—protein interactions. NMRD SO¢- 111, 3532 (1989).

data contain valuable information about such interactions affgf - Bertini, C. Luchinat, M. S. Viezzoli, L. Banci, S. H. Koenig, H. T.

the model-free approach advocated here allows their dynarg{c
and structural consequences to be disentangled. '
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